Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37737895

RESUMEN

The transmembrane serine protease matriptase is a key regulator of both barrier-disruptive and protective epithelial cell-cell interactions. Elevated matriptase is a consistent feature of epithelial ovarian cancers (OvCa), where multicellular spheroids shed from the primary tumor into the peritoneal cavity are critical drivers of metastasis. Dynamic cell-to-cell adhesive contacts are required for spheroid formation and maintenance. Here, we show that overactive matriptase, reflected in an increased ratio of matriptase to its inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), disrupts cell-cell contacts to produce loose prometastatic spheroids that display increased mesothelial cell adhesion and submesothelial invasion. We show that these activities are dependent on the matriptase activation of a protease-activated receptor-2 (PAR-2) signaling pathway involving PI3K/Akt and MMP9-induced disruption of cell-cell adhesion by the release of the soluble E-cadherin ectodomain. These data reveal a novel pathological connection between matriptase activation of PAR-2 and disruption of cell-cell adhesion, and support the clinical investigation of this signaling axis as a therapeutic strategy for aggressive metastatic OvCa.


Asunto(s)
Neoplasias Ováricas , Serina Endopeptidasas , Transducción de Señal , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/genética , Neoplasias Ováricas/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Esferoides Celulares , Serina Endopeptidasas/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298257

RESUMEN

Hemostasis is a delicate balance between coagulation and fibrinolysis that regulates the formation and removal of fibrin, respectively. Positive and negative feedback loops and crosstalk between coagulation and fibrinolytic serine proteases maintain the hemostatic balance to prevent both excessive bleeding and thrombosis. Here, we identify a novel role for the glycosylphosphatidylinositol (GPI)-anchored serine protease testisin in the regulation of pericellular hemostasis. Using in vitro cell-based fibrin generation assays, we found that the expression of catalytically active testisin on the cell surface accelerates thrombin-dependent fibrin polymerization, and intriguingly, that it subsequently promotes accelerated fibrinolysis. We find that the testisin-dependent fibrin formation is inhibited by rivaroxaban, a specific inhibitor of the central prothrombin-activating serine protease factor Xa (FXa), demonstrating that cell-surface testisin acts upstream of factor X (FX) to promote fibrin formation at the cell surface. Unexpectedly, testisin was also found to accelerate fibrinolysis by stimulating the plasmin-dependent degradation of fibrin and enhancing plasmin-dependent cell invasion through polymerized fibrin. Testisin was not a direct activator of plasminogen, but it is able to induce zymogen cleavage and the activation of pro-urokinase plasminogen activator (pro-uPA), which converts plasminogen to plasmin. These data identify a new proteolytic component that can regulate pericellular hemostatic cascades at the cell surface, which has implications for angiogenesis, cancer biology, and male fertility.


Asunto(s)
Fibrinólisis , Hemostáticos , Masculino , Humanos , Fibrinólisis/fisiología , Fibrinolisina/metabolismo , Glicosilfosfatidilinositoles , Serina Proteasas , Serina Endopeptidasas/metabolismo , Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa , Fibrina/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(28): e2201423119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867758

RESUMEN

Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.


Asunto(s)
Antígenos Bacterianos , Antineoplásicos , Toxinas Bacterianas , Neoplasias Ováricas , Profármacos , Serina Proteasas , Antígenos Bacterianos/farmacología , Antígenos Bacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Toxinas Bacterianas/farmacología , Toxinas Bacterianas/uso terapéutico , Línea Celular Tumoral , Precursores Enzimáticos/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Profármacos/farmacología , Profármacos/uso terapéutico , Serina Proteasas/metabolismo , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Immunol ; 10: 1348, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258531

RESUMEN

Clinical observations and accumulating laboratory evidence support a complex interplay between coagulation, inflammation, innate immunity and fibrinolysis in venous thromboembolism (VTE). VTE, which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), and the subsequent complications of post-thrombotic syndrome (PTS), are significant causes of morbidity and mortality in patients. Clinical risk factors for VTE include cancer, major trauma, surgery, sepsis, inflammatory bowel disease, paralysis, prolonged periods of immobility, and aging. Abnormalities in venous blood flow or stasis initiates the activation of endothelial cells, and in concert with platelets, neutrophils and monocytes, propagates VTE in an intact vein. In addition, inflammatory cells play crucial roles in thrombus recanalization and restoration of blood flow via fibrinolysis and vascular remodeling. Faster resolution of the thrombus is key for improved disease prognosis. While in the clinical setting, anticoagulation therapy is successful in preventing propagation of venous thrombi, current therapies are not designed to inhibit inflammation, which can lead to the development of PTS. Animal models of DVT have provided many insights into the molecular and cellular mechanisms involved in the formation, propagation, and resolution of venous thrombi as well as the roles of key components of the fibrinolytic system in these processes. Here, we review the recent advances in our understanding of fibrinolysis and inflammation in the resolution of VTE.


Asunto(s)
Células Endoteliales/fisiología , Inflamación/inmunología , Trombosis de la Vena/inmunología , Animales , Coagulación Sanguínea , Modelos Animales de Enfermedad , Fibrinólisis , Humanos , Inmunidad Innata
6.
J Mol Med (Berl) ; 97(5): 691-709, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30911775

RESUMEN

Ovarian cancer is the leading cause of death among all the gynecological cancers in the USA. Ovarian cancer employs a unique mode of metastasis, as exfoliated tumor cells disseminate within the peritoneal cavity, colonizing in several sites as well as accumulating ascites. Tumor recurrence and widespread metastasis are significant factors contributing to poor prognosis. PRSS21 is a metastasis-associated ovarian cancer gene that encodes the glycosyl-phosphatidylinositol-linked serine protease, testisin. Testisin expression is increased in multiple ovarian tumor types, with relatively little expression in normal tissues, but is differentially decreased in metastatic ovarian serous carcinomas compared to primary tumors. Here we explored the function of testisin in late-stage ovarian cancer progression using a murine xenograft model of ovarian intraperitoneal tumor metastasis. Increased tumor testisin expression inhibited intra-peritoneal tumor seeding and colonization, ascites accumulation, and metastatic tumor burden that was dependent on catalytically active testisin. The known testisin substrate, protease-activated receptor-2 (PAR-2), is a target of testisin activity. Gene profiling and mechanistic studies demonstrate that testisin activity suppresses the synthesis and secretion of pro-angiogenic angiopoietins, ANG2 and ANGPTL4, which normally promote vascular leak and edema. These observations support a model wherein testisin activates PAR-2 to antagonize proangiogenic angiopoietins that modulate vascular permeability and ascites accumulation associated with ovarian tumor metastasis. KEY MESSAGES: Testisin inhibits metastatic ovarian tumor burden and ascites production. Testisin activity antagonizes ANG2 and ANGPTL4 synthesis and secretion. PAR-2 is a proteolytic target of testisin on the surface of ovarian cancer cells.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Neoplasias Ováricas/metabolismo , Ribonucleasa Pancreática/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Ratones Desnudos , Metástasis de la Neoplasia/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Proteolisis , Proteínas de Transporte Vesicular/metabolismo
7.
Cancer Res ; 79(2): 301-310, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30610085

RESUMEN

Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Receptor PAR-2/metabolismo , Serina Proteasas/metabolismo , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Progresión de la Enfermedad , Glicosilfosfatidilinositoles/metabolismo , Humanos , Neoplasias/enzimología , Transducción de Señal
8.
Trends Cancer ; 4(9): 643-654, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30149882

RESUMEN

Liquid biopsy, or the capacity to noninvasively isolate and analyze plasma tumor DNA (ptDNA) using blood samples, represents an important tool for modern oncology that enables increasingly safe, personalized, and robust cancer diagnosis and treatment. Here, we review advances in the development and implementation of liquid biopsy approaches, and we focus on the capacity of liquid biopsy to noninvasively detect oncological disease and enhance early detection strategies. In addition to noting the distinctions between mutation-targeted and mutation-agnostic approaches, we discuss the potential for genomic analysis and longitudinal testing to identify somatic lesions early and to guide intervention at more manageable disease stages.


Asunto(s)
ADN de Neoplasias , Neoplasias/diagnóstico , Animales , Biología Computacional , Simulación por Computador , Humanos , Biopsia Líquida , Neoplasias/genética , Neoplasias/terapia , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...